The correct option is D None of these
As, f(x)=⎧⎪⎨⎪⎩sin[x][x],[x]≠00,[x]=0
⇒f(x)=⎧⎪⎨⎪⎩sin[x][x],xϵR−[0,1)0,0≤x<1
∴ RHL at x=0
limx→0+f(x)=limx→0sin[0+h][0+h]=0
LHL at x=0
limx→0−f(x)=limh→0sin[0−h][0−h]
=limh→0sin(−1)−1=sin1
Since, RHL≠LHL
Therefore, limit does not exist.