wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=⎪ ⎪ ⎪⎪ ⎪ ⎪sin (a+1)x+2sin xx,x<02,x=01+bx1x,x>0

is continuous at x=0, then find the values of a and b.

Open in App
Solution

Given:
The function f(x) is continuous at x=0.

limx0f(x)=limx0+f(x)=f(0)=2 ................(1)

Now, limx0f(x)=limh0f(0h)
Thus,
limx0f(x)=limh0f(h)
= limh0sin (a+1)(h)+2sin (h)h

= limh0sin (a+1)h2sin hh

= limh0sin (a+1)hh+limh02sin hh

= (a+1)limh0sin (a+1)h(a+1)h+2 limh0sin hh

=a+1+2

=a+3 ....................(2)

From equation (1)

limx0f(x)=2a+3=2
a=1
Now,
limx0+f(x)=limh0(0+h)

limx0+1+bx1x=limh0+1+bh1h

=limh01+bh1h×1+bh+11+bh+1

=limh0((1+bh)2(1)2h(1+bh+1))=limh01+bh1h(1+bh+1)

=limh0bhh×[1+bh)+1]=limh0b1+bh+1

= b1+b×0+1=b1+1=b2

Now, again from equation (1)

limx0+f(x)=f(0)=2

b2=2
b=4

Hence, the values of a=1 and b=4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Limits Tending to Infinity and Sequential Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon