If f(x) = ⎧⎪⎨⎪⎩|x|+1,x<00,x=0|x|−1,x>0
for what values of a does limx→a f(x) exist?
Here f(x) = ⎧⎪⎨⎪⎩|x|+1,x<00,x=0|x|−1,x>0
⇒f(x)=⎧⎪⎨⎪⎩−x+1,x<00,x=0x−1,x>0
∴limx→a f(x) exists for all a ≠ 0.
Now we see whether limx→0 exist or not
L.H.L. = limx→0−f(x)=limx→0− |x|+1
Put x =0-h, as x→0,h→0
∴limh→0 |0-h| +1 = 1
R.H.L. = limx→0+f(x)=limx→0+ |x| -1
Put x =0 + h as x→x→0,h→0
∴limx→0|0+h|−1=limh→0 h - 1 =-1
∴ L.H.L. ≠ R.H.L.
Thus limx→0 f(x) does not exist.