The correct options are
B f(x) is continuous but non-differentiable at x=1
C f(x) is non-differentiable at x=2
D f(x) is discontinuous at x=2
f(x)={x2(sgn [x])+{x} ,0≤x<2sinx+|x−3| ,2≤x<4
sgn (x)=⎧⎪⎨⎪⎩1 ,x>00 ,x=0−1 ,x<0
For continuity at x=1
lim x→1+f(x)=lim x→1+x2(sgn [x])+{x} =1 sgn(1)+0 =1+0=1
lim x→1−f(x)=lim x→1−x2(sgn [x])+{x} =1 sgn(0)+1 =0+1=1
Also, f(1)=1
∴L.H.L=R.H.L=f(1)
Hence, f(x) is continuous at x=1
Now, for differentiability,
f′(1+)=limh→0f(1+h)−f(1)h
=limh→0(1+h)2(sgn [1+h])+{1+h}−1h
=limh→0(1+h)2+h−1h
=limh→0h2+3hh
=limh→0(h+3)
=3
f′(1−)=limh→0f(1−h)−f(1)−h
=limh→0(1−h)2(sgn [1−h])+{1−h}−1−h
=limh→0(1−h)2×0+1−h−1−h
=limh→0−h−h
=1
⇒f′(1+)≠f′(1−)
Hence, f(x) is not differentiable at x=1.
Now, at x=2
lim x→2−f(x)=lim x→2−x2(sgn [x])+{x} =4 sgn(1)+1 =4+1=5
lim x→2+f(x)=lim x→2+sinx+|x−3| =sin2+1
∴L.H.L≠R.H.L
Hence, f(x) is discontinuous at x=2 and then f(x) is also non-differentiable at x=2.