If f(x)=⎧⎪⎨⎪⎩x3,x<03x−2,0≤x≤2x2+1,x>2
Then find the value(s) of x for which f(x)=2.
43
f(x)=2f(x)=x3,x<0x3=2⇒x=213>0 −not possible.
f(x)=3x−2, 0≤x≤2f(x)=2⇒x=43 0≤43≤2 −possible.
f(x)=x2+1,x>2x2+1=2⇒x2=1⇒x=±1.1<2 & −1<2 −not possible.
Hence f(x) = 2 only when x=43