If f(x)=limn→∞extan(1/n)ln(1/n) and ∫f(x)3√sin11xcosxdx=g(x)+C, then
g(π4)=−158
g(x) is non-differentiable at infinitely many points
limn→∞tan(1n)ln(1n)=−limn→∞tan(1n)(1n).ln(n)n=−1.0=0
Then f(x)=e∘=1
∴∫f(x)3√sin11xcosxdx=∫d(x)sin113xcos13x=∫sin−113xcos−13Xdx=∫tan−113Xcos−4xdx=(tanx)−113+1(−113+1)+(tanx)−23(−23)+C=−38tan−83x−32tan−23x+C=g(X)+C