If f(x)=loge(1−x) and g(x)=[x, then determine each of the following functions :
(i) f+g
(ii) fg
(iii) fg
(iv) gf
Also, find (f+g)(−1),(fg)(0),(fg)(12),(gf)(12)
We have
f(x)=loge(1−x) and g(x)=[x]
f(x)=loge(1−x) is defined, if 1−x>0
⇒1>x⇒x<1⇒xϵ(−∞,1)
g(x) = [x] is defined for all xϵR
∴ Domain (g) = R
∴Domain(f)∩RDomain(g)=(−∞,1)∩R=(−∞,1)
(i) f+g:(−∞,1)→R defined by
(f+g)(x)=f(x)+g(x)=loge(1−x)+[x]
(ii) fg:(−∞,1)→R defined by (fg)(x)=f(x)×g(x)
=loge(1−x)×[x]=[x]loge(1−x)
(iii) g(x) = [x]
∴ [x] = 0
⇒xϵ(0,1)
So, domain (fg)=domain(f)∩domain(g)−{x:g(x)=0}=(−∞,0)
∴fg:(−∞,0)→ defined by (fg)(x)=loge(1−x)[x]
(iv) We have,
f(x)=loge(1−x)
⇒1f(x)=1loge(1−x) is defined, and loge(1−x)≠0
⇒1−x>0 and 1−x≠0
⇒x<1 and x≠0
⇒xϵ(−∞,0)∪(0,1)
∴ Domain (gf)=(−∞,0)∪(0,1)
gf:(−∞,0)∪(0,1)→R defined by
(gf)(x)=[x]loge(1−x)
Now,
(f+g)(−1)=f(−1)+g(−1)=loge(1−(−1))+[−1]=loge2−1⇒(f+g)(−1)=loge2−1
(v) fg(0)=loge(1−0)×[0]
(vi) (fg)(12)= does not exist
(vii) (gf)(12)=(12)loge(1−12)=0