If f'(x)=ϕ(x) and ϕ'(x)=f(x) for all x. Also f(3)=5 and f'(3)=4. Then the value of [f(10)]2−[ϕ(10)]2 is .
Open in App
Solution
[f(x)]2−[ϕ(x)]2 Differentiating w.r.t. x ddx([f(x)]2−[ϕ(x)]2)=2[f(x)f′(x)−ϕ(x)ϕ′(x)]=2[f(x)ϕ(x)−ϕ(x)f(x)]=0 So, [f(x)]2−[ϕ(x)]2= constant ⇒[f(10)]2−[ϕ(10)]2=[f(3)]2−[ϕ(3)]2⇒[f(10)]2−[ϕ(10)]2=52−42=9