The correct option is D Number of integers in the range of f(g(x)) is 1
f(x)=sin(π6sin(π2sinx))∵−1≤sinx≤1⇒−π2≤π2sinx≤π2⇒−1≤sin(π2sinx)≤1⇒−π6≤π6sin(π6sinx)≤π6⇒−12≤sin(π6sinx(π2sinx))≤12
∴ Range is[−12,12]
Clearly, only one integer is there in the range of f(x).
Now,
fog(x)=f(π2sinx)=sin(π6sin(π2sin(π2sinx)))∵−1≤sinx≤1⇒−π2≤π2sinx≤π2⇒−1≤sin(π2sinx)≤1⇒−π2≤π2(sin(π2sinx))≤π2⇒−1≤sin(π2(sin(π2sinx)))≤1⇒−π6≤π6sin(π2(sin(π2sinx)))≤π6⇒−12≤sin(π6sin(π2(sin(π2sinx))))≤12
∴ Range of fog(x)=[−12,12]
Clearly, only one integer is there in the range of f(g(x)).