If f(x)=sinx+ln|secx+tanx|−2x for xϵ(−π2,π2) then check the monotonicity of f(x)
f′(x)=cosx+|secx.tanx+sec2xsecx+tanx|−2 =cosx−2+|secx| =cosx+|secx|−2 =cosx+1|cosx|−2 =(√cosx−1√cosx)2 >0 Hence f′(x)>0 Hence increasing.