If f(x)=√2x+3, Then f′(x)=
1√2x+3
f(x)=√2x+3f′(x)=limh→0f(x+h)−f(x)hf′(x)=limh→0√2(x+h)+3−√2x+3h
Multiply the numerator and denominator with
(√2x+2h+3+√2x+3)f′(x)=limh→0(2x+2h+3−2x−3)h(√2x+2h+3+√2x+3)f′(x)=limh→02hh.limh→0(1√2x+2h+3+√2x+3)f′(x)=2.12√2x+3=1√2x+3