Put x=secθ where θ∈[0,π2)∪(π2,π]
f(x)=tan−1(1−|tanθ|√sec2θ+2|tanθ|)+sin−1(|tanθ||secθ|)
For x≥1, θ∈[0,π2)
f(x)=tan−1(1−tanθ1+tanθ)+sin−1(sinθ)=tan−1tan(π4−θ)+θ=π4−θ+θ=π4
For x≤−1, θ∈(π2,π]
f(x)=tan−1(1+tanθ1−tanθ)+sin−1(sinθ)=tan−1(tan(π4+θ))+sin−1(sinθ)
We know that tan−1(tanx)=x−π for x∈(π2,3π2)
and sin−1(sinx)=π−x for x∈(π2,π)
f(x)=π4+θ−π+(π−θ)=π4
∴tan(f(x))=1 for |x|≥1
|x2−2|=1
⇒x2−2=±1
x2=3,1
⇒x=±√3,±1
Hence, there are four solutions.