The correct option is C Domain of joi(x)+joh(x) is
[1√2,1]
jof(x)=√tan−1x−cot−1x
2tan−1x≥π2
⇒ Domain of (jof(x))=[1,∞) ⋯(i)
jog(x)=√sec−1x−cosec−1x
2sec−1x≥π2
⇒ Domain of (jog(x))=(−∞,−1]∪[√2,∞) ⋯(ii)
joh(x)=√sin−1x+cos−1x+tan−1x
Domain of sin−1x,cos−1x is [−1,1] and
sin−1x+cos−1x+tan−1x≥0⇒tan−1x≥−π2
⇒ Domain of (joh(x))=[−1,1] ⋯(iii)
joi(x)=√sin−1x−cos−1x
2sin−1x≥π2
⇒ Domain of (joi(x))=[1√2,1] ⋯(iv)
∴ From (i),(ii),(iii),(iv)
a) Domain of jof(x)+jog(x) is [√2,∞)
b) Domain of jof(x)+joi(x) is {1}
c) Domain of joi(x)+joh(x) is [1√2,1]
d) Domain of jog(x)+joh(x) is {−1}