If f'x=x+1x then the value of fx is
x2+logx+c
x22+logx+c
x2-logx+c
None of these
Explanation for the correct option:
Finding the value of fx:
Given that,
f'x=x+1x
Integrate the above equation with respect to x,
fx=∫x+1xdx=x22+logx+c[∵∫xndx=xn+1n+1+c,∫1xdx=logx+c]
Hence, the correct option is B.
If (2.3)x=(0.23)y=1000 then find the value of 1x-1y.