If f(x)=x2+2x+2;x≥−1=−x3+3x+1;x<−1, then the value of f(f(−2)) is :
If f(x)=(x3+x2, for 0≤x≤2x+2, for 2≤x≤4 then the odd extension of f(x) would be -
If y=x2+5x32+2x, then dydx=