If f(x)=x2−5x+6, and A=⎡⎢⎣2012131−10⎤⎥⎦ f(A)=⎡⎢⎣1−1a−1−1b−544⎤⎥⎦ find a−b?
Open in App
Solution
Given f(x)=x2−5x+6, and A=⎡⎢⎣2012131−10⎤⎥⎦ f(A)=⎡⎢⎣1−1a−1−1b−544⎤⎥⎦ ⇒f(A)=A2−5A+6I ⇒⎡⎢⎣1−1a−1−1b−544⎤⎥⎦=⎡⎢⎣5−129−250−1−2⎤⎥⎦−⎡⎢⎣1005105155−50⎤⎥⎦+⎡⎢⎣600060006⎤⎥⎦ ⇒⎡⎢⎣1−1a−1−1b−544⎤⎥⎦=⎡⎢⎣1−1−3−1−1−10−544⎤⎥⎦ ⇒a=−3 and b=−10 ∴a−b=7