f(x)=x3+3x2+4x+bsinx+ccosx
Differentiating w.r.t. x, we get
f′(x)=3x2+6x+4+bcosx−csinx
For f(x) to be one-one, only possibility is f′(x)≥0 ∀ x∈R
3x2+6x+4+bcosx−csinx≥0 for all x∈R
⇒3x2+6x+4≥csinx−bcosx for all x∈R
⇒3x2+6x+4≥√b2+c2
⇒√b2+c2≤3(x2+2x+1)+1
⇒√b2+c2≤3(x+1)2+1
⇒√b2+c2≤1
⇒b2+c2≤1