If f(x)=x3−1x3, show that f(x)+f(1x=0).
f(x)=x3−1x3……(i) Now, f(1x)=(1x)3−1(1x)3=1x3−11x3⇒f(1x)=1x3−x3……(ii) Adding equation (i) and equation (ii), we get f(x)+f(1x)=(x3−1x3)+(1x3−x3)=x3−1x3+1x3−x3=0∴f(x)+f(1x)=0 Hence, proved.
If f(x)=x3−1x3 , then f(x)+f(1x)=