If f(x)=|x|3 , show that f′′(x) exists for all real x and find it.
Given function : f(x)=|x|3
|x|={xx≥0−xx<0
Therefore,
f(x)=|x|3={x3x≥0−x3x<0
When x>0
f(x)=x3
Differentiating w.r.t. x , we get
Again , differentiating w.r.t. x , we get
f′′(x)=(3x2)′
f′′(x)=6x
Hence, f′′(x) exists for x>0
When x<0
f(x)=−x3
Differentiating w.r.t. x , we get
Again , differentiating w.r.t. x , we get
f′′(x)=(−3x2)′
f′′(x)=−6x
Hence, f′′(x) exists for x<0
At x=0,
To check if f′′(x) exists for x=0
We need to check differentiability of f′′(x) at x=0
Here,
f(x)={x3,x≥0−x3,x<0
Thus, L.H.D=R.H.D of f′(x) at x=0
Therefore, f′(x) is differentiable at x=0
So, f′′(x) exists for x=0.
Therefore, f′′(x) exists for all real values of x.
Hence, proved.