wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=|x|3 , show that f′′(x) exists for all real x and find it.


Open in App
Solution

Given function : f(x)=|x|3

|x|={xx0xx<0

Therefore,

f(x)=|x|3={x3x0x3x<0

When x>0

f(x)=x3
Differentiating w.r.t. x , we get

f(x)=3x2

Again , differentiating w.r.t. x , we get
f′′(x)=(3x2)
f′′(x)=6x

Hence, f′′(x) exists for x>0

When x<0

f(x)=x3
Differentiating w.r.t. x , we get

f(x)=3x2

Again , differentiating w.r.t. x , we get
f′′(x)=(3x2)
f′′(x)=6x

Hence, f′′(x) exists for x<0
At x=0,

To check if f′′(x) exists for x=0

We need to check differentiability of f′′(x) at x=0

Here,
f(x)={x3,x0x3,x<0

f(x)={3x2,x03x2,x<0

We know that f(x) is differentiate at x=0 if its
L.H.D=R.H.D.

L.H.D=limh0f(0h)f(0)h

L.H.D=limh0f(h)f(0)h

L.H.D=limh03(h)23(0)2h

​​​​​​​L.H.D=limh03h2h

​​​​​​​L.H.D=limh03h

Substituting h=0

​​​​​​​L.H.D=3(0)=0

R.H.D=limh0f(0+h)f(0)h

R.H.D=limh0f(h)f(0)h

R.H.D=limh03(h)23(0)2h

R.H.D=limh03h2h

R.H.D=limh03h

Substituting h=0
R.H.D=3(0)=0

Thus, L.H.D=R.H.D of f(x) at x=0

Therefore, f(x) is differentiable at x=0

So, f′′(x) exists for x=0.

Therefore, f′′(x) exists for all real values of x.

Hence, proved.



flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon