The correct options are
A f(0)+f(2)=f(1)
B f(0)+f(3)=0
C f(1)+f(3)=f(2)
f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3) .....(1)
f′(x)=3x2+2xf′(1)+f′′(2) ....(2)
f′′(x)=6x+2f′(1) .....(3)
f′′′(x)=6
⇒f′′′(3)=6 .....(4)
Substitute x=1 in (2)
f′(1)=3+2f′(1)+f′′(2)
⇒f′(1)+f′′(2)+3=0 .....(5)
Substitute x=2 in (3)
f′′(2)=12+2f′(1) .....(6)
Solving (5) and (6), we get
f′′(2)=2,f′(1)=−5
Substitute these values and value from (4) in (1)
f(x)=x3−5x2+2x+6
Now, f(0)=6
f(1)=4
f(2)=−2
f(3)=−6
Hence, f(0)+f(2)=f(1)
f(0)+f(3)=0
f(1)+f(3)=f(2)