If f(x) = x, x≤1, and f(x) =x2 + bx + c, x>1, and f'(x) exists finitely for all x ϵ R, then
b =-1, c ϵ R
c = 1, b ϵ R
b = 1, c =-1
b =-1, c =1
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then