If f(x)=xsinx, then f′π2 is equal to
Given that:
f(x)=xsinx........(1)
Differentiating equation with respect to x.
df(x)dx=d(xsinx)dx
f′(x)=d(x)dxsinx+xd(sinx)dx
f′(x)=sinx+xcosx
Now puting x=π2
f′(π2)=sinπ2+π2cosπ2
∵sinπ2=1,cosπ2=0
f′(π2)=1
If f(x)=x sin x, then f′(π2)=