If f(x - y) ,f(x) f(y) and f(x + y) are in A.P for all x, y ∈ R and f (0) ≠ 0 then-
is an even function
2 f (x) f(y) = f (x - y) + f ( x + y) at x = y = 0 ; f (0) = 1 ( f (0) ≠ 0 )
and at y = 0
2 f (x) = f (- x) + f (x) ⇒ f (x) = f ( - x)
ie . f (x) is an even function f′(x) = - f′ ( - x)
⇒f′ (1) + f (-1) = 0
Also f′(x) = - f′ (- x)
f′(x) + f′ (- x) = 0