If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y,zϵR, then evaluate limn→∞3n∑r=1(4r)f(3r)n3 is equal to
Open in App
Solution
Let x=y=z=1 ⇒f(3)=3×f(1)=3 Let y=z=1 ⇒f(x+2)=f(x)+2. Hence,for integral values of x, f(x)=x Let L=limn→∞3n∑r=1(4r)f(3r)n3 L=limn→∞3n∑r=1(4r)(3r)n3 L=limn→∞36(n)(n+1)(2n+1)6n3 L=36×26 L=12