If for an A.P. a5=a10=5×a, then a15 is....
Let a be first term and d be the common difference then given
a5=a10=5×a
so, a+4d=a+9d=5a ----------(1)
a+4d=a+9d (first case)
⇒a−a=9d−4d
⇒0=5d
⇒d=0----(2)
And also
5a=a+4d (2nd case)
⇒5a−a=4d
⇒4a=4d
a=d=0 {from (2)}
Thus, a15=a+14d
=0+(14×0)
∴a15=0