If for non-zero x, 3f(x)+4f(1x)=1x−10, then ∫32f(x)dx is equal to
37ln23
3f(x)+4f(1x)=1x−10 ...........(1)
replace x by 1x
3f(1x)+4f(x)=x−10 ...........(2)
Solving (1) and (2)
9f(x)−16f(x)=3x−30−4x+40−7f(x)=10+3x−4xf(x)=−107−37x+4x7∫32f(x)dx=∫32(−107−37x+4x7)dx=[−10x7−37ln|x|+4x214]32=37ln23