If 2m+n2nām=16,3p3n=81 and a=2110, then a2m+nāp(amā2n+2p)ā1=
2m+n2n−m=16,3p3n=81 and a=2110, then a2m+n−p(am−2n+2p)−1⇒2m+n−n+m=24⇒22m=24Comparing, we get2m=4⇒m=42=2Given,3p3n=813p−n=(3)4p−n=4a2m+n−p(am−2n+2p)−1=a2m+n−p×am−2n+2p=a2m+n−p+m−2n+2p=a3m−n+p∵a=2110⇒a3m−n+p=(2110)3m−n+p=23m−n+p10=23×2−n+p10=26−n+p10=26+410=21010=2