If a+bxa−bx=b+cxb−cx=c+dxc−dx (x≠0), then show that a, b, c and d are in G.P.
Here, a+bxa−bx=b+cxb−cx
⇒(a+bx)(b−cx)=(b+cx)(a−bx)
⇒ab−acx+b2x−bcx2=ab−b2x+acx−bcx2
⇒2b2x=2acx
⇒b2=ac
⇒ba=cb ...... (1)
Also, b+cxb−cx=c+dxc−dx
⇒(b+cx)(c−dx)=(c+dx)(b−cx)
⇒bc−bdx+c2x−cdx2=bc−c2x+bdx−cdx2
⇒2c2x=2bdx
⇒c2=bd
⇒cb=dc ....... (2)
From (1) and (2), we get
ba=cb=dc
which shows that a, b, c and d are in G.P.