The correct option is A atleat one root is (0,1)
Letf(x)=C2x33+C1x22+C0xNow,f(0)=0,f(1)=C23+C12+C0=0(given_eq)∴f(0)=f(1)=0Alsof(x)iscontinuousin[0,1]and,differentiable,in(0,1)∴ByRolle′stheorematleastoneCin(0,1)suchthatf′(C)=0,0<C<1⇒C2C2+C1C+C0=0[since,f′(x)=C2x2+C1x+C0]∴C2x2+C1x+C0=0hasatleastonerealrootin(0,1)