sinAsinB=p;cosAcosB=q
sinA=psinB−−−(1);cosA=qcosB−−−(2)
tanA=pqtanB−−−(3)(dividing(1)by(2))sinAcosA=pqsinBcosB(Multiply(1)&(2))
sinAcosAcos2Acos2B=pqsinBcosBcos2Acos2B
=sec2BtanA=pqsec2AtanB
=(1+tan2B)tanA=pq(1+tan2A)tanB
=[1+(pqtanA)2]tanA=pq(1+tan2A).pqtanA(by(3))
=1+p2q2tan2A=q2+q2tan2A
=tan2A(q2p2−q2)=q2−1
=tan2A(q2−1)p2q2−p2q2
tanA=√p2(1−q2)q2(p2−1)=pq√1−q2p2−1
tanB=√1−q2p2−1