wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinAsinB=p and cosAcosB=q, then tanA and tanB .

Open in App
Solution

sinAsinB=p;cosAcosB=q

sinA=psinB(1);cosA=qcosB(2)

tanA=pqtanB(3)(dividing(1)by(2))sinAcosA=pqsinBcosB(Multiply(1)&(2))

sinAcosAcos2Acos2B=pqsinBcosBcos2Acos2B

=sec2BtanA=pqsec2AtanB

=(1+tan2B)tanA=pq(1+tan2A)tanB

=[1+(pqtanA)2]tanA=pq(1+tan2A).pqtanA(by(3))

=1+p2q2tan2A=q2+q2tan2A

=tan2A(q2p2q2)=q21

=tan2A(q21)p2q2p2q2

tanA=p2(1q2)q2(p21)=pq1q2p21

tanB=1q2p21


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon