The correct option is A az+x=bx+y=cy+z
Given:
yb+c−a=zc+a−b=xa+b−c
By invertendo, we get
b+c−ay=c+a−bz=a+b−cx
Now, let b+c−ay=c+a−bz=a+b−cx=k
∴ by theorem of equal ratio:
ab=cd=a+cb+d
⇒k=(c+a−b)+(a+b−c)z+x
⇒k=2az+x −−−−−(I)
Similarly, it can be written for other terms:
k=(a+b−c)+(b+c−a)x+y
⇒k=2bx+y −−−−−(II)
k=(b+c−a)+(c+a−b)y+z
⇒k=2cy+z −−−−−(II)
Using equation I,IIand III,
∴2az+x=2bx+y=2cy+z
∴az+x=bx+y=cy+z