If function f(x)=√1+x−3√1+xx,x≠0 is continuous function, then f(0) is equal to-
f(x)=√x+1−3√1+xx
We know that 1+xn=1+nx+n(n−1)2+(Higher order terms)
Using this we can write √x+1=1+x2and 3√1+x=1+x3
So √x+1−3√1+x=x6
limx→0+f(x)=limx→0+x6x=16
If the function f(x) = √4+x−2x,x≠0 , is continuous at x = 0, the f(0) =