(b) a=13 , b=83 Given: fx=1-sin2x3cos2x, if x<π2a, if x=π2b1-sinxπ-2x2, if x>π2 We have (LHL at x = π2) = limx→π2-fx=limh→0fπ2-h =limh→01-sin2 π2-h3 cos2 π2-h=limh→01-cos2 h3 sin2 h=13limh→0 sin2 h sin2 h=13 (RHL at x = π2) = limx→π2+fx=limh→0fπ2+h =limh→0b1-sin π2+hπ-2π2+h2=limh→0b1-cos h-2h2=limh→02b sin2h24h2=limh→02b sin2h216h24=b8limh→0sinh2h22=b8×1=b8 Also, fπ2=a If f(x) is continuous at x = π2, then limx→π2-fx =lim x→π2+fx=fπ2 ⇒13 =b8 = a ⇒a=13 and b=83