If fx=logelogex, then f'e is equal to
e-1
e
1
0
Explanation for the correct option:
Finding the value of f'e:
Given that,
fx=logelogex
Differentiate the above function with respect to x,
f'x=1logexddxlogex[∵ddxlogx=1logx]=1logex1x
Now, substitute x=e in the above differentiation. we get
f'e=1logee1e[∵logaa=1]=e-1
Hence, the correct option is A.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2