If fx=1+cos2x2, then f'π2 is
π6
-π6
16
Explanation for the correct option:
Finding the value of f'π2:
Given that,
fx=1+cos2x2
Differentiate the given function with respect to x,
f'x=dcos2x2dx21+cos2x2=-2cosx2sinx22x21+cos2x2[∵d(cosx)dx=-sinx]=-xsin2x21+cos2x2[∵sin2x=2sinxcosx]
Now, putting x=π2 in the above differentiation, we get
f'π2=-sin2π22π21+cos2π22=-π2sin2π41+cos2π4=-π2sinπ21+cos2π4=-π211+12[∵cos(π4)=12]=-π223=-π6[byrationalizing]
Hence, the correct option is B.