The correct option is B 2+1f(x)+1f′(x)
We discussed in the videos that if y=f(x) and z=ϕ(x)
then dydx=f′(x)ϕ′(X)
Same thing we will apply here
d(g(x))d(f(x))=g′(x)f′(x)g(x)=2f(x)+x+log(f(x))g′(x)=2f′(x)+1+1f(x)x f′(x)
So g′(x)f′(x)will be2f′(x)+1+f′(x)f(x)f′(x)=2+1f′(x)+1f(x) (Note that Chain rule is applied here for log(f(x))
which is the correct answer.