If g(x) is a polynomial satisfying g(x)g(y)=g(x)+g(y)+g(xy)−2 for all real x and y and g(2)=5 then Ltx→3g(x) is
A
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A10 g(x).g(y)=g(x)+g(y)+g(xy)−2....(1) Put x=1,y=2, then g(1).g(2)=g(1)+g(2)+g(2)−2 5g(1)=g(1)+5+5−2 4g(1)=8∴g(1)=2 Put y=1x in equation (1), we get
g(x).g(1x)=g(x)+g(1x)+g(1)−2 g(x).g(1x)=g(x)+g(1x)+2−2[∵g(1)=2] This is valid only for the polynomial ∴g(x)=1±xn....(2) Now g(2)=5 (Given) ∴1±2n=5 [Using equation (2)] ±2n=4,⟹2n=4,−4 Since the value of 2n cannot be −Ve. So, 2n=4,⟹n=2 Now, put n=2 in equation (2), we get g(x)=1±x2 ∴Ltx→3g(x)=Ltx→3(1±x2)=1±(3)2 =1±9=10,−8.