The correct option is B 2.√2ln(3)
We can see that the function g(x) is given in terms of integral. So to differentiate it we’ll have to apply Leibnitz formula.
ddx∫b(x)a(x)f(t)dt=f(b(x)).b′(x)−f(a(x)).a′(x)So,g′(x)=1ln(1+x2).2x−1ln(1+22).0g′(x)=2xln(1+x2)And g′(√2)=2.√2ln(3)