The correct option is C 2−n
We have,
I=∫π/20 cosn x sinn x dx⇒I=12n∫π/20 2ncosn x sinn x dx⇒I=12n∫π/20 (2cos x sin x)n dx⇒I=12n∫π/20 (sin 2x)n dxPutting 2x=θ, so thatWhen x=0⇒θ=0 and when x=π2⇒θ=πI=12n∫π0 (sinn θ)12dθ⇒I=12n+1∫π/20((sin θ)n+(sin (π−θ))n]dθ(∫2a0f(x) dx=∫a0(f(x)+f(2a−x)] dx]Thus, 12n∫π/20 sinn θ dθ∴k=2−n