If I1, I2, I3 are the intercepts of x2+y2−14x−10y+24=0 on x−axis, y−axis and y=x respectively, then
S:x2+y2−14x−10y+24=0
To find x−intercept, substitute (y=0)
x2−14x+24=0
I1=(x1−x2)=√(14)2−4×24
=√196−96
I1=10
To find y−intercept, substitute (x=0)
y2−10y+24=0
I2=|y1−y2|=√(10)2−4×24
I2=2
Intercept of y=x
2x2−24x+24=0
x2−12x+12=0
(x1−x2)=√(12)2−4×12
=√96
∴ Intercept of y=x is I3=√2|x1−x2|=√2|y1−y2|
=√2√96
I3=√192
∴I3>I1>I2
Hence, option B.