The correct option is A right angled
Since, a2+b2+c2=8R2
Using sine rule, we have
(2RsinA)2+(2RsinB)2+(2RsinC)2=8R2
⇒4R2[(sinA)2+(sinB)2+(sinC)2]=8R2
⇒sin2A+sin2B+sin2C=2
⇒1−cos2A+sin2B+1−cos2C=2
⇒−cos2A+sin2B−cos2C=2−2=0
⇒cos2A−sin2B+cos2C=0
⇒cos(A+B)cos(A−B)+cos2C=0
Since, A+B+C=π⇒A+B=π−C
⇒cos(π−C)cos(A−B)+cos2C=0
⇒−cosCcos(A−B)+cos2C=0
⇒cosC[−cos(A−B)+cosC]=0
⇒cosC=0,−cos(A−B)+cosC=0
⇒C=π2 or −cos(A−B)+cos(π−(A+B))=0
⇒−cos(A−B)−cos(A+B)=0
Using transformation angle formula, we have
⇒2cosAcosB=0
∴cosA=0,cosB=0
Hence ∠A=π2or ∠B=π2, or ∠C=π2