(sinA+sinB+sinC)(sinA+sinB−sinC)=3sinAsinB⇒(sinA+sinB)2−sin2C=3sinAsinB⇒sin2A+sin2B−sin2C=sinAsinB⇒sin2A+sin(B+C)sin(B−C)=sinAsinB[∵A+B+C=π]⇒sin2A+sin(π−A)sin(B−C)=sinAsinB⇒sinA[sin(A)+sin(B−C)]=sinAsinB⇒sinA[sin(B+C)+sin(B−C)]=sinAsinB⇒sinA(2sinBcosC)=sinAsinB⇒sinAsinB(2cosC−1)=0⇒cosC=12⇒C=60∘[∵sinAsinB≠0]