If in an A.P., Sn=n2p and Sm=m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
p3
Given:
Sn=n2p
⇒n2{2a+(n−1)d}=n2p
⇒2a+(n−1)d=2np
⇒2a=2np−(n−1)d……(1)
Sm=m2p
⇒m2{2a+(m−1)d}=m2p
⇒2a+(m−1)d=2mp
⇒2a=2mp−(m−1)d=2mp……(2)
From (1) and (2), we have:
2np - (n - 1)d = 2mp - (m - 1)d
⇒2p(n−2)=d(n−1−m+1)
⇒2p=d
Substituting d = 2p in equation (1), we get:
a = p
Sum of p terms of the A.P. is given by:
p2{2a+(p−1)d}
=p2{2p+(p−1)2p}=p3