If ∫10dx√1+x+√1−x+2 can be expressed in the form a√b−πc−1, where a, b, c are prime numbers. Then value of a + b + c is ___
Open in App
Solution
Put x = sin2t ⇒dx=2cos2tdtI=∫π402(2cos2t−1)dtcost+sint+cost−sint+2=∫π402cos2t−1cost+1dt=∫π401−2(1−cos2t)(1+cost)dt =2∫π40(cost−1)dt+∫π4012cos2t2dt=2[sint−t]π40+[12.2tant2]π40=2[1√2−π4]+tanπ8=√2−π2+√2−1=2√2−π2−1⇒a=b=c=2Soa+b+c=6