∫k0(12(1+4x2))dx=(π16)or(18)∫k0(1(14)+x2)dx=(π16)=∫k0(1((12))2+x2)dx=(π2)
=(1(12))[tan−1(x(12))]k0=(π2)
=2(tan−12k−tan−10)=(π2)=tan−12k=(π4)2k=tan(π4)
2k=1∴k=(12)