If ∫dx(x+2)(x2+1)=aln(1+x2)+btan−1x+15ln|x+2|+C then
∫dx(x+2)(x2+1)1(x+2)(x2+2)=Ax+2+Bx+Cx2+11=A(x2+1)+(Bx+C)(x+2)
When1=A(4+1)+0(Bx+C)A=1651=x2+15+(Bx+C)(x+2)
Let x=01=15+C(2),C=251=x2+15+(Bx+25)(x+2)
Let x=21=4+15+(2B+25)(2+2)V=1+(2B+25)4
is B=−15
=∫15x+2+∫−15x+25x2+1dx=15∫dxx+2−15∫xdxx2+1+25∫dxx2+1=15ln|x+2|−15×12∫2xdxx2+1+25tan−1x=15ln|x+2|−110ln∣∣x2+1∣∣+25tan−1x+C