wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 4ex+6ex9ex4exdx=Ax+Bloge(9e2x4)+C then A=......,B=......,C=.......

Open in App
Solution

4ex+6ex9ex4exdx

=4e2x+69e2x4dx

We can write Numerator=A(Denominator)+Bddx(Denominator)

4e2x+6=A(9e2x4)+Bddx(9e2x4)

4e2x+6=A(9e2x4)+B(18e2x)

4e2x+6=(9A+18B)e2x+(4A)

Comparing the coefficients, we have

4A=6 or A=64=32

9A+18B=418B=49A=4+9×32=8+272=352

B=3536

4e2x+69e2x4dx

=A(9e2x4)+B(18e2x)9e2x4dx

=A(9e2x4)dx9e2x4+B(18e2x)dx9e2x4

=32(9e2x4)dx9e2x4+3536(18e2x)dx9e2x4

=32dx+3536(18e2x)dx9e2x4

=32x+3536loge(9e2x4)+c

Comparing with Ax+Bloge(9e2x4)+C

we get A=32,B=3536,C=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon