If k+5Pk+1 = 11(k−1)2 k+3Pk, then the values of k are
7 and 11
6 and 7
2 and 11
2 and 6
k+5Pk+1=11(k−1)2k+3Pk
⇒(k+5)!(k−5−k−1)!=11(k−1)2×(k+3)!(k+3−k)!
⇒(k+5)!4!=11(k−1)2×(k+3)!3!
⇒(k+5)!(k+3)!=11(k−1)2×4!3!
⇒(k+5)(k+4)=22(k−1)
⇒k2+9k+20=22k−22
⇒k2−13k+42=0
⇒k=6,7