wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If L=2400r=7log7(r+1r),M=1023r=2logr(r+1) and N=2011r=2(1logrp) where p=(12345...........2011), then

A
L+M=13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
M2+N2=101
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
LM+N=6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
LMN=30
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D LMN=30

Solve:

Given,

L=2400r=7log7(r+1r)

L=log7(87)+log7(98)+log7(109)++log7(24012400)

We know that

loga+logb=logab

L=log7(87)×(98)×(109)××(4012400)

L=log7(2407)=log773

L=3(i){logaax=x

M=π1023r=2logr(r+1)

M=log2(3)log34log45..log10231024

M=(log3log2)(log4log3).(log1024log1023)

{logab=logbloga}

M=log1024log2=log2210

M=10(ii)

Now, N=20πr=2(1logrp)

Where, P=(1.2.3.4.5..2011)

P=2011!

N=log2p+log3p+log4p++log2011p

N=logp(2342011)=logp(2011)!

N=logpp=1(iii)

on adding equation (i) and equation (ii)

we get.

L+M=3+10=13

from eqn. (i), (i) and (iii) we get

L=3,M=10 and N=1

M2+N2=100+1=101

and LMN =3101=30

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon