The correct option is A 219(220−1)
(1+x+2x2)20=a0+a1x+a2x2+........+a40x40 ....(1)
Put x=1 in (1)
420=a0+a1+a2+........+a40
⇒240=a0+a1+a2+........+a40 ....(2)
Put x=−1 in (1)
⇒220=a0−a1+a2−a3........−a39+a40 ....(3)
Adding (2) and (3), we get
240+220=2(a0+a2+a4+......+a38+a40)
220(220+1)=2(a0+a2+a4+......+a38+a40)
⇒219(220+1)=a0+a2+a4+......+a38+a40
a0+a2+a4+......+a38=219(220+1)−a40 .....(4)
Since, a40 is the coefficient of x40 in the expansion of (1+x+2x2)20
⇒a40=220
Put this value in (4), we get
a0+a2+a4+......+a38=219(220+1)−220
⇒a0+a2+a4+......+a38=219(220−1)